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Spontaneous symmetry breaking in the finite lattice quantum sine-Gordon model

S. G. Chung
Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5151

~Received 10 February 2000!

The spontaneous breaking of a global discrete translational symmetry in the finite lattice quantum sine-
Gordon model is demonstrated by a density matrix renormalization group. A phase diagram in the coupling
constant-inverse system size plane is obtained. Comparison of the phase diagram with a Woomany-Wyld
finite-size scaling leads to an identification of the Berezinskii-Kosterlitz-Thouless transition in the quantum
sine-Gordon model as the spontaneous symmetry breaking.

PACS number~s!: 05.50.1q, 11.10.Lm, 11.30.Qc, 64.60.2i
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The sine-Gordon~SG! model has been basically unde
stood, i.e., the Bethe ansatz~BA! solution @1# and statistical
mechanics@2# in the attractive regimeb2,4p. The repul-
sive regime 4p,b2,`, however, is still open. The BA for
the massive Thirring~MT! model, which is formally equiva-
lent to the SG model forb2,8p @3#, led to physically un-
desirable charge~topological! neutral excitations@4#. The
quantum inverse scattering method for a lattice SG mo
with local interaction led to the same difficulty@5#. It is
believed that the physical vacuum should be a simple D
sea. To avoid difficulty at the repulsive regime, Luth
pointed out the equivalence of the MT model with the sp
1/2 XYZ model through the Jordan-Wigner transformatio
and obtained an expression for the soliton mass~cf. Eq. ~23!
in Ref. @6#! See also a criticism of Wiegmann@7# on the
equivalence between the eight vertex model from which
calculates the energy spectrum of the spin 1/2XYZ model
and the SG model. The instability atb258p, however, was
not properly resolved. In fact, it was later confirmed throu
extensive perturbative renormalization group studies of
SG model@7,8# in the context of its near equivalence to th
two-dimensionalXY model and the associated Berezinsk
Kosterlitz-Thouless~BKT! transition, that the SG model un
dergoes a BKT transition atb258p in the small mass pa
rameter limit. The precise determination of the BK
transition point and its universality class was done by N
mura and others in a series of papers@9#. That is, the phase
8p,b2 is massless. A possible dynamical mass genera
in the massless Thirring model through a Jordan–Wig
mapping to the spin 1/2XXZ model was discussed by Mc
Coy and Wu@10#. Notice an important difference betwee
the spin 1/2XXZ andXYZ models. The former has a mas
less phase while the latter does not. Iwabuchi and Sch
also tried to realize the lattice MT model out of a scali
limit of a six-vertex model@11#. The obtained soliton mas
@cf. Eq. ~5.10! in Ref. @11## is different from that of Luther,
and the massless phase is neither accounted for. An effo
cover both the massless phase and the massive phase
due to Dutyshev and Japaridge, Nersesyan, and Wiegm
@12#, a U(1) symmetric isospin massless Thirring mod
which is equivalent to the Luther–Emery backscatter
model@13#. They obtained a BKT-like phase diagram with
dynamical mass generation but without spontaneous sym
try breaking, and the same soliton mass in the repulsive
gime 4p,b2,8p as that of Iwabuchi and Schotte. It
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found, however, that the underlying particle spectrum in t
model is different from that of the SG model for large m
menta. It is precisely this difference that makes theU(1)
theory free from the difficulty at 4p,b2,8p. This fact is
also direct evidence that bosonization@7,13,14#, which leads
to the SG model, is precise only at large space-time sep
tions. In short a unified theory of the SG model, which giv
the exact soliton spectrum at 4p,b2,8p and the massles
phase at 8p,b2, is yet to be constructed. A recent work b
Kehrein @15# based on Wigner’s flow equation method
good progress in this direction.

So much for the infinite system. The BKT transition
bearing models, however, suffer a strong finite-size eff
arising from the essential singularity, exponential growth
the correlation length near the BKT transition@16#. In par-
ticular, the infinite order BKT transition is replaced by
second order-like transition with effective critical couplin
constant, which depends on the system size logarithmica
Thus in reality, when finite condensed matter systems
analyzed by the SG model or any other BKT transitio
bearing models, the physical quantities of interest will cr
cally depend on the system size.

It is also worth mentioning that often in condensed mat
physics, there exists a physically meaningful lattice cut
and the lattice cutoff related ambiguity~particularly diver-
gencies and necessary renormalization procedure! does not
exist. Thus, our first motivation in this paper is to precise
analyze a finite lattice SG Hamiltonian

Hl5(
i 51

L H 2
b2

2

d2

df i
2 1

1

2b2 ~f i2f i 11!2

1
1

b2 ~11cosf i !J , ~1!

wheref i is the field variable at the lattice sitei. The field
theory SG Hamiltonian@17#

H f5E H 1

2
p21

1

2
fx

21
m2

b2l 2 ~11cosbf!J dx, ~2!

wherel is the lattice cutoff can be written, after discretizatio
and rescalingbf→f andm51, as

Hl5H f / l . ~3!
3262 ©2000 The American Physical Society
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To discuss our second motivation, consider the stro
coupling limit b→` with the infinite system sizeL→`. It
is clear from Eq.~2! that in this limitH f becomes a massles
scalar field theory with nondegenerate ground state. In
weak coupling limitb50 on the other hand, the ground sta
is infinitely degenerate with each ground state describin
zero-point motion near one of the potential minimabf5p
62p3 integer. The latter point may be intuitively unde
stood if one regards Eq.~1! as describing a system of torsion
coupled quantum pendula under gravity. In this pictureb
50 means an infinite mass of pendulum. One thus expec
quantum phase transition at some critical coupling cons
bc

2 separating a gapless nondegenerate ground state a
broken symmetry ground state, which is simply a zero-po
motion. Is the BKT transition in the SG model the spontan
ous breaking of a gloval discrete translational symmetry
the f space?

In this paper, using a density matrix renormalizati
group ~DMRG! @18#, we demonstrate the spontaneous sy
metry breaking~SSB! in the finite lattice SG model. We
draw a phase diagram in theb2 inverse system size plane,
critical line separating the SSB ground state and unbro
one. Comparing the result with a Roomany-Wyld finite-s
scaling@19# leads then to the identification of the BKT tran
sition as the SSB.

To analyzeHl by DMRG, we proceed as follows. Firs
determine the basis states at each lattice site by solving
one-body problem, the Mathieu equation@20#

H 2
b2

2

d2

df2 1
1

b2 ~11cosf!J c~f!5«c~f!. ~4!

To solve this, we limit thef space to be@2Mp,Mp# and
takeM to be an even integer. Then in the Floquet’s solut

cnv~f!5eivfPnv~f!, ~5!

wheren is the band index andv is crystal momentum,v is
determined from the periodic boundary conditione2pMv i

51. Pnv(w) is 2p periodic and can be expanded with
sufficiently large integerJ as

Pnv~f!5 (
k52J

J

Cnv
k eikf. ~6!

It is convenient to work on the Wannier functions

Wn~f22pm!5
1

AM
(

v
e22pmv icnv~f!, ~7!

where

m52
M21

2
,2

M21

2
11, . . . ,

M21

2
.

The Wannier function is localized at each cosine poten
well. Including up ton bands and for fixed number ofv
statesM, the dimension of the local basis states isq5n
3M and all the local variables are expressed byq3q ma-
trices.
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To calculate the ground state and the first excited st
and thus an energy gap Gap(L) as a function of the system
sizeL, we follow the standard DMRG procedure. We use t
infinite algorithm, open boundary condition, and the grou
state target. We limit the phase space at each lattice sit
four potential wells, i.e.,M54. We putn54 and start with
the superblock sizeN540. The casesn55 andN545 are
determined for the caseb2513 to see the convergence. Th
superblock sizesN550 and 60 are also determined for th
casesb2516– 18.

Figures 1–3 are the results forb2513. Figure 1 shows
the probability distribution of the phase~position of pendu-
lum in mechanical analog! at the center site in the groun
state. The probability distributions at different sites differ
only a few percent at the edges. Due to the phase sp

FIG. 1. The probability distribution of the phase at the cen
site in the ground state for the system sizesL57, 37, 43, and 61.
b2513.

FIG. 2. The phase average vs the system size for the lowest
states forb2513. The phase-average split to6p and energy de-
generacy indicate the spontaneous symmetry breaking.
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truncation,M54, the translational symmetry is somewh
broken from the outset, and the symmetry unbroken stat
L57 is delocalized over the two potential minima at2p and
p. With the increase of the system size, the distribution
comes asymmetric and eventually localized near the po
tial well at 2p. At the same time, the first excited sta
shows similar localization but at the other potential mi
mum atp. At L543, the two states are almost degenera
the energy difference;1025, showing the SSB and the as
sociated ground state degeneracy. Figure 2 shows the p
averages at the center site for the lowest two states as f
tions of the system sizeL. After L543, the first excited state
suddenly acquires a mass, indicating that the1p ground
state localized at the potential well at1p is no longer acces
sible from the2p ground state, and the excited state the
after is due to a local deformation of the2p ground state
which must be a topologically neutral soliton-antisoliton p
creation. The squares in Fig. 3 show the phase average,
different from site to site, versus the lattice site in the fi
excited state atL567.

We repeat the calculation varying the coupling const
b2. With the decrease ofb2, the SSB occurs for shorte
system sizes, more abruptly, and the soliton-antisoliton
becomes more deeply bounded as shown in Fig. 3. We
now draw a phase diagram in theb22L plane with a critical
line separating the broken symmetry ground state and
unbroken one. To clearly see an asymptotic behavior at la
system size, we have rather plotted theb221/L phase dia-
gram in Fig. 4. In this figure, a simple extrapolation from t
last three points for the critical coupling constantsbc

2

516– 18 givesbc
2519.0 atL→`. This value is different

from the well-establishedb258p for the BKT transition in
the small mass limitm→0 @cf. Eq. ~2!#. However, we have
to take into account the fact that we made the limited ph
space approximation, and that the BKT-bearing systems
fer a strong finite-size effect@16#. The infinite order BKT
transition is replaced by a second order transition with lo
rithmically size-dependent critical coupling constant. W
thus need to evaluate the critical coupling constant ass
ated with the finite-size modified, and limited phase sp
modified, BKT transition. For this purpose, the Rooman

FIG. 3. Phase averages vs the lattice site in the first excited
for b257, 9, and 13.
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Wyld finite-size scaling@19# tells us that a phase transitio
can be identified by measuring the quantityL3Gap(L) vs
b2. Figure 5 showsL3Gap(L) vs b2. The data crossing a
bc

2518.8 indicates a continuous transition. Note that
situation is rather like the Ising model, where a spontane
symmetry breaking separates two massive phases@17#. From
the RG studies of the continuous model Eq.~2! @7,8#, it is
known that the critical pointbc

258p in the small mass limit
separates the massless phase and the massive phase.
lattice model, due to the truncation of the phase space
@2Mp,Mp#, the massless phase becomes massive,
therefore the behavior ofL3Gap(L) vs b2 should look like
that of the Ising model. The good agreement between the
valuesbc

2518.8 and 19.0 indicates that the BKT transition
indeed the SSB.

To summarize, we have demonstrated the spontane
symmetry breaking in the finite, lattice quantum sine-Gord
model by using density matrix renormalization group.

te FIG. 4. The phase diagram inb221/L plane. An extrapolation
in the limit L→` limit gives bc

2519.0.b258p for the BKT tran-
sition in the small mass limit is also plotted for comparison.

FIG. 5. L3Gap(L) vs b2 for the ~24p, 4p! phase space. The
lines are from cross to square for the system sizesL519, 25, 31,
37, 43, 49, and 55. Data crossing occurs atbc

2518.8.
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phase diagram in the coupling constant-inverse system
plane is obtained. Combining the phase diagram with
Roomany-Wyld finite-size scaling, we have identified t
Berezinskii-Kosterlitz-Thouless transition in the quantu
sine-Gordon model as the spontaneous symmetry break
.
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